
Understanding the Role of Licenses and Evolution
in Open Architecture Software Ecosystems

Walt Scacchi

Institute for Software Research. University of California, Irvine USA

Thomas A. Alspaugh

Computer Science Dept., Georgetown University, Washington, DC, USA

Abstract

The role of software ecosystems in the development and evolution of heterogene-

ously-licensed open architecture systems has received insufficient consideration.

Such systems are composed of components potentially under two or more li-

censes, open source or proprietary or both, in an architecture in which evolution

can occur by evolving existing components, replacing them, or refactoring. The

software licenses of the components both facilitate and constrain the system’s

ecosystem and its evolution, and the licenses’ rights and obligations are crucial

in producing an acceptable system. Consequently, software component licenses

and the architectural composition of a system determine the software ecosystem

niche where a systems lies. Understanding and describing software ecosystem

niches is a key contribution of this work. A case study of an open architecture

software system that articulates different niches is employed to this end. We

examine how the architecture and software component licenses of a composed

system at design-time, build-time, and run-time help determine the system’s

software ecosystem niche and provide insight and guidance for identifying and

selecting potential evolutionary paths of system, architecture, and niches.

Keywords: Software architecture, software ecosystems, software licenses, open

Email addresses: wscacchi@ics.uci.edu (Walt Scacchi), alspaugh@cs.
georgetown.edu (Thomas A. Alspaugh)

Preprint submitted to Elsevier November 29, 2010

Manuscript
Click here to view linked References

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 NOV 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Understanding the Role of Licenses and Evolution in Open Architecture
Software Ecosystems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Irvine,Institute for Software
Research,Irvine,CA,92697

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The role of software ecosystems in the development and evolution of heterogene- ously-licensed open
architecture systems has received insu cient consideration. Such systems are composed of components
potentially under two or more li- censes, open source or proprietary or both, in an architecture in which
evolution can occur by evolving existing components, replacing them, or refactoring. The software licenses
of the components both facilitate and constrain the system’s ecosystem and its evolution, and the licenses’
rights and obligations are crucial in producing an acceptable system. Consequently, software component
licenses and the architectural composition of a system determine the software ecosystem niche where a
systems lies. Understanding and describing software ecosystem niches is a key contribution of this work. A
case study of an open architecture software system that articulates di erent niches is employed to this end.
We examine how the architecture and software component licenses of a composed system at design-time,
build-time, and run-time help determine the system’s software ecosystem niche and provide insight and
guidance for identifying and selecting potential evolutionary paths of system, architecture, and niches.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

source software, software evolution, case study.

1. Introduction

A substantial number of development organizations are adopting a strategy

in which a software-intensive system (one in which software plays a crucial role)

is developed with an open architecture (OA) [27], whose components may be

open source software (OSS) or proprietary with open application programming

interfaces (APIs). Such systems evolve not only through the evolution of their

individual components, but also through replacement of one component by an-

other, possibly from a different producer or under a different license. With

this approach, another organization often comes between software component

producers and system consumers. These organizations take on the role of sys-

tem architect or integrator, either as independent software vendors, government

contractors, system integration consultants, or in-house system integrators. In

turn, such an integrator designs a system architecture that can be composed

of components largely produced elsewhere, interconnected through interfaces

accommodating use of dynamic links, intra- or inter-application scripts, com-

munication protocols, software buses, databases/repositories, plug-ins, libraries

or software shims as necessary to achieve the desired result. An OA devel-

opment process results in an ecosystem in which the integrator is influenced

from one direction by the goals, interfaces, license choices, and release cycles of

the software component producers, and from another direction by the needs of

the system’s consumers. As a result the software components are reused more

widely, and the resulting OA systems can achieve reuse benefits such as reduced

costs, increased reliability, and potentially increased agility in evolving to meet

changing needs. An emerging challenge is to realize the benefits of this ap-

proach when the individual components are heterogeneously licensed [4, 15, 31],

each potentially with a different license, rather than a single OSS license as in

uniformly-licensed OSS projects or a single proprietary license as in proprietary

development.

2

Producer

Component
or

Application

License

Consumer

Component
or

Application

Rights and
obligations

...

...

Independent
Software
Vendors

Government
Contractors

System
Integration
Consultants

OR OR

Producer

Component
or

Application

License

...

...

Consumer

Component
or

Application

Rights and
obligations

ARCHITECTURE

Integrators

In-House
System

Integrators
OR

Producer of
Software

Consumer
of

Software

Intermediary
in Network

Unit of
Software

Its license

Key

Figure 1: Schema for OA software supply networks (notation follows [10])

This challenge is inevitably entwined with the software ecosystems that arise

for OA systems (Figure 1). We find that an OA software ecosystem involves or-

ganizations and individuals producing, composing, and consuming components

that articulate software supply networks from producers to consumers, but also

• the OA of the system(s) in question,

• the open interfaces met by the components,

• the degree of coupling in the evolution of related components, and

• the rights and obligations resulting from the software licenses under which

various components are released, that propagate from producers to con-

sumers.

These four items play a key role in determining the software ecosystem for

a specific system, as Figures 2, 3, and 4 below illustrate and the remainder of

this paper will make clear.

3

1.1. A Motivating Example

A motivating example of this approach is the Unity game development tool,

produced by Unity Technologies [33]. Its license agreement, from which we quote

below, lists eleven distinct licenses and indicates the tool is produced, apparently

using an OA approach, using at least 18 externally produced components or

groups of components:

1. The Mono Class Library, Copyright 2005-2008 Novell, Inc.

2. The Mono Runtime Libraries, Copyright 2005-2008 Novell, Inc.

3. Boo, Copyright 2003-2008 Rodrigo B. Oliveira

4. UnityScript, Copyright 2005-2008 Rodrigo B. Oliveira

5. OpenAL cross platform audio library, Copyright 1999-2006 by authors.

6. PhysX physics library. Copyright 2003-2008 by Ageia Technologies, Inc.

7. libvorbis. Copyright (c) 2002-2007 Xiph.org Foundation

8. libtheora. Copyright (c) 2002-2007 Xiph.org Foundation

9. zlib general purpose compression library. Copyright (c) 1995-2005 Jean-loup
Gailly and Mark Adler

10. libpng PNG reference library

11. jpeglib JPEG library. Copyright (C) 1991-1998, Thomas G. Lane.

12. Twilight Prophecy SDK, a multi-platform development system for virtual re-
ality and multimedia. Copyright 1997-2003 Twilight 3D Finland Oy Ltd

13. dynamic bitset, Copyright Chuck Allison and Jeremy Siek 2001-2002.

14. The Mono C# Compiler and Tools, Copyright 2005-2008 Novell, Inc.

15. libcurl. Copyright (c) 1996-2008, Daniel Stenberg <daniel@haxx.se>.

16. PostgreSQL Database Management System

17. FreeType. Copyright (c) 2007 The FreeType Project (www.freetype.org).

18. NVIDIA Cg. Copyright (c) 2002-2008 NVIDIA Corp.

The software ecosystem for Unity3D as a standalone software package is de-

limited by the diverse set of software components listed above. However the

architecture that integrates or composes these components is closed and thus

unknown to a system consumer, as is the manner in which the different li-

censes associated with these components impose obligations or provide rights

to consumers, or on the other components to which they are interconnected.

Subsequently, we see that software ecosystems can be understood in part by

examining relationships between architectural composition of software compo-

nents that are subject to different licenses, and this necessitates access to the

4

Firefox

MPL|GPL|LGPL

Opera

Opera EULA

Design-time
architecture:

Browser,
WP,

calendar

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

GPL,
Google ToS

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL, Google
ToS, MS EULA

OR OR

AbiWord

GPL

Google
Docs

Google ToS

Google
Calendar

Google ToS

Gnome
Evolution

GPL

Fedora

GPL

Windows

MS Eula

OSX

Apple
License

...

...

Instance
architecture:

Opera,
 Google Docs,

Evolution,
OSX

Opera EULA,
Google ToS,

Apple License

OR OR ...

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

Figure 2: Ecosystem for three possible instantiations of a single design architecture

system’s architecture composition. By examining the open architecture of a

specific composed software system, it becomes possible to explicitly identify the

software ecosystem niche in which the system is embedded.

1.2. Understanding Open Architecture Software Ecosystems

A software ecosystem constitutes a software supply network that connects

software producers to integrators to consumers through licensed components

and composed systems. Figure 2 outlines the software ecosystem elements and

relationships for an OA case study that we examine in this paper.

A software ecosystem niche articulates a specific software supply network

that interconnects particular software producers, integrators, and consumers.

A software system defined niche may lie within an existing single ecosystem,

or one that may span a network of software producer ecosystems. A composed

software system architecture helps determine the software ecosystem niche, since

the architecture identifies the components, their licenses and producers, and

thus the network of software ecosystems in which it participates. Such a niche

5

also transmits license-borne obligations and access/usage rights passed from the

participating software component producers through integrators and to system

consumers. Thus, system architects or component integrators help determine

in which software ecosystem niche a given instance architecture for the system

participates.

As a software system evolves over time, as its components are updated or

changed, or their architectural interconnections are refactored, it is desirable to

determine whether and how the system’s ecosystem niche may have changed.

A system may evolve because its consumers want to migrate to alternatives

from different component producers, or choose components whose licenses are

more/less desirable. Software system consumers may want to direct their sys-

tem integrators to compose the system’s architecture so as to move into or away

from certain niches. Consequently, system integrators can update or modify

system architectural choices at design-time, build-time (when components are

compiled together into an executable), or run-time (when bindings to remote

executable services are instantiated) to move a software system from one niche

to another. Thus, understanding how software ecosystem niches emerge is a

useful concept that links software engineering concerns for software architec-

ture, system integration/composition, and software evolution to organizational

and supply network relationships between software component producers, inte-

grators and system consumers.

To help explain how OA systems articulate software ecosystem niches, we

provide a software architecture case study for use in this paper. Its architectural

design comprises a web browser, word processor, calendaring and email applica-

tions, host platform operating system, and remote services as its components.

This system is intentionally simple for expository purposes, but its ecosystem

is complex in important ways:

• Alternatives exist for each component that involve diverse possibilities for

licenses, evolution paths, system capabilities, requirements, and ecosys-

tems, such as Word (proprietary), AbiWord (OSS), or Google Docs (ser-

6

vice) for the word processor.

• Some component choices co-evolve with coordination among suppliers

(such as Mozilla and Gnome components) while others do not (Section 5).

• The system in its current open architecture is independent of any one

vendor. Such ecosystems are more revealing and offer more evolution

paths for study (and use) than a system in an ecosystem dominated by a

single vendor such as Microsoft, Oracle, or SAP. Single-vendor-dominated

ecosystems may be larger, but are less diverse and thus less interesting

and offer fewer choices with significant ecosystem impact.

• The system is independent of any one platform; for example, it could be

evolved to run on a mobile device (Section 6), moving it into a much

different niche.

• The insights provided by the case study system allow one, we believe, to

anticipate or even predict the kinds of issues that will arise when new

platforms emerge.

The four primary components collectively represent more than a million

lines of code. Each component, and its subcomponents recursively down to

the smallest, is a composition of other more primitive components that may be

independently developed or developed as part of this system, and may be added

to the ecosystem relationships in order to consider its effect on supply chains

and evolution. An individual component such as Firefox constitutes a micro-

platform itself on which Ajax, Rich Internet Applications, or other scripted

functionality (e.g. invoking an embedded link to a YouTube Video player) can

run internally, constituting an embedded ecosystem. Equivalent components

from different OSS or proprietary software producers can be identified, where

each alternative is subject to a different type of software license. For example,

for Web browsers, we consider the Firefox browser from the Mozilla Foundation,

which comes with a choice of OSS license (MPL, GPL, or LGPL), and the Opera

browser from Opera Software, which comes with a proprietary software end-user

7

license agreement (EULA). Similarly, for word processor, we consider the OSS

AbiWord application (GPL) and Web-based Google Docs service (proprietary

Terms of Service).

The OA we describe covers a number of systems we have identified, built,

and deployed in a university research laboratory. Example niches involving

these components appear in Figures 3 and 4. We have also developed OA

systems with more complex architectures that incorporate components for con-

tent management systems (Drupal), wikis (MediaWiki), blogs (B2evolution),

teleconferencing and media servers (Flash media server, Red5 media server),

chat (BlaB! Lite), Web spiders and search engines (Nutch, Lucene, Sphider),

relational database management systems (MySQL), and others. Furthermore,

the OSS application stacks and infrastructure (platform) stacks found at Bit-

Nami.org/stacks (accessed 29 April 2010) could also be incorporated in OA

systems, as could their proprietary counterparts. However, these more complex

OAs still reflect the core architectural concepts and constructs, as well as soft-

ware ecosystem relationships, that we present in our example case study in a

more accessible manner.

The software ecosystem niches for the case study system, or indeed any sys-

tem, depend on which component implementations are used and the architecture

in which they are combined and instantiated, as does the overall rights and obli-

gations for the instantiated system. In addition, we build on previous work on

heterogeneously-licensed systems [4, 15, 31] by examining how OA development

affects and is affected by software ecosystems, and the role of component licenses

in shaping OA software ecosystem niches.

Consequently, we focus our attention to understand the ecosystem of an

open architecture software system such that:

• It must rest on a license structure of rights and obligations (Section 4),

focusing on obligations that are enactable and testable1.

1For example, many OSS licenses include an obligation to make a component’s modified
code public, and whether a specific version of the code is public at a specified Web address

8

Firefox

MPL|GPL|LGPL

Opera

Opera EULA

Design-time
architecture:

Browser,
WP,

calendar

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

GPL,
Google ToS

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL, Google
ToS, MS EULA

OR OR

AbiWord

GPL

Google
Docs

Google ToS

Google
Calendar

Google ToS

Gnome
Evolution

GPL

Fedora

GPL

Windows

MS Eula

OSX

Apple
License

...

...

Instance
architecture:

Opera,
 Google Docs,

Evolution,
OSX

Opera EULA,
Google ToS,

Apple License

OR OR ...

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

Figure 3: The ecosystem niche for one instance architecture

Firefox

MPL|GPL|LGPL

Opera

Opera EULA

Design-time
architecture:

Browser,
WP,

calendar

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

GPL,
Google ToS

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL, Google
ToS, MS EULA

OR OR

AbiWord

GPL

Google
Docs

Google ToS

Google
Calendar

Google ToS

Gnome
Evolution

GPL

Fedora

GPL

Windows

MS Eula

OSX

Apple
License

...

...

Instance
architecture:

Opera,
 Google Docs,

Evolution,
OSX

Opera EULA,
Google ToS,

Apple License

OR OR ...

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

Figure 4: The ecosystem niche for a second instance architecture

9

• It must take account of the distinctions between the design-time, build-

time, and distribution-time architectures (Section 3) and the rights and

obligations that come into play for each of them.

• It must distinguish the architectural constructs significant for software

licenses, and embody their effects on rights and obligations (Section 3).

• It must define license architectures.

• It must account for alternative ways in which software systems, compo-

nents, and licenses can evolve (Section 5), and

• It must provide an automated environment for creating and managing li-

cense architectures. We are developing a prototype that manages a license

architecture as a view of the system architecture [2].

The remainder of this paper is organized as follows. Section 2 places this

work in the context of related research. Section 3 discusses open architecture,

and the influence of software licenses is discussed in Section 4. Section 5 ad-

dresses evolution of software ecosystems. Section 6 discusses some implications

that follow from this study, and Section 7 concludes the paper.

2. Related Research

The study of software ecosystems is emerging as an exciting new area of

systematic investigation and conceptual development within software engineer-

ing. Understanding the many possible roles that software ecosystems can play

in shaping software engineering practice is gaining more attention since the

concept first appeared [21]. Bosch [8] builds a conceptual lineage from soft-

ware product line (SPL) concepts and practices [7, 12] to software ecosystems.

is both enactable (it can be put into practice) and testable. In contrast, the General Public
License (GPL) v.3 provision “No covered work shall be deemed part of an effective techno-
logical measure under any applicable law fulfilling obligations under article 11 of the WIPO
copyright treaty” is not enactable in any obvious way, nor is it testable — how can one verify
what others deem?

10

SPLs focus on the centralized development of families of related systems from

reusable components hosted on a common platform with an intra-organizational

base, with the resulting systems either intended for in-house use or commercial

deployments. Software ecosystems then are seen to extend this practice to sys-

tems hosted on an inter-organizational base, which may resemble development

approaches conceived for virtual enterprises for software development [24]. Pro-

ducers of commercial software applications or packages thus need to adapt their

development strategy and business model to one focused on coordinating and

guiding decentralized software development of its products and enhancements

(e.g., plug-in components).

Along with other colleagues [9, 11, 34], Bosch identifies alternative ways to

connect reusable software components through integration and tight coupling

found in SPLs, or via loose coupling using glue code, scripting or other late

binding composition schemes in ecosystems or other decentralized enterprises

[24, 25], as a key facet that can enable software producers to build systems from

diverse sources.

Jansen and colleagues [16, 17] observe that software ecosystems (a) embed

software supply networks that span multiple organizations, and (b) are embed-

ded within a network of intersecting or overlapping software ecosystems that

span the world of software engineering practice. Scacchi [30] for example, iden-

tifies that the world of open source software (OSS) development is a loosely

coupled collection of software ecosystems different from those of commercial

software producers, and its supply networks are articulated within a network

of FOSS development projects. Networks of OSS ecosystems have also begun

to appear around very large OSS projects for Web browsers, Web servers, word

processors, and others, as well as related application development environments

like NetBeans and Eclipse, and these networks have become part of global in-

formation infrastructures [18].

OSS ecosystems also exhibit strong relationships between the ongoing evo-

lution of OSS systems and their developer/user communities, such that the

success of one co-depends on the success of the other [30]. Ven and Mannaert

11

discuss the challenges independent software vendors face in combining OSS and

proprietary components, with emphasis on how OSS components evolve and are

maintained in this context [35].

Boucharas and colleagues [10] then draw attention to the need to more

systematically and formally model the contours of software supply networks,

ecosystems, and networks of ecosystems. Such a formal modeling base may then

help in systematically reasoning about what kinds of relationships or strategies

may arise within a software ecosystem. For example, Kuehnel [19] examines

how Microsoft’s software ecosystem developed around operating systems (MS

Windows) and key applications (e.g., MS Office) may be transforming from

“predator” to “prey” in its effort to control the expansion of its markets to ac-

commodate OSS (as the extant prey) that eschew closed source software with

proprietary software licenses.

Our work in this area builds on these efforts in the following ways. First,

we share the view of a need for examining software ecosystems, but we start

from software system architectures that can be formally modeled and analyzed

with automated tool support [7, 32]. Explicit modeling of software architec-

tures enables the ability to view and analyze them at design-time, build-time,

or deployment/run-time. Software architectures also serve as a mechanism for

coordinating decentralized software development across multi-site projects [28].

Similarly, explicit models allow for the specification of system architectures us-

ing either proprietary software components with open APIs, OSS components,

or combinations thereof, thereby realizing open architecture (OA) systems [31].

We then find value in attributing open architecture components with their (in-

tellectual property) licenses [2], since software licenses are an expression of con-

tractual/social obligations that software consumers must fulfill in order to realize

the rights to use the software in specified allowable manners, as determined by

the software’s producers.

12

3. Open Architectures

Open architecture (OA) software is a customization technique introduced by

Oreizy [27] that enables third parties to modify a software system through its

exposed architecture, evolving the system by replacing its components. Increas-

ingly more software-intensive systems are developed using an OA strategy, not

only with OSS components but also proprietary components with open APIs

(e.g. [33]). Using this approach can lower development costs and increase re-

liability and function [31]. Composing a system with heterogeneously-licensed

components, however, increases the likelihood of conflicts, liabilities, and no-

rights stemming from incompatible licenses. Thus, in our work we define an

OA system as a software system consisting of components that are either open

source or proprietary with open API, whose overall system rights at a minimum

allow its use and redistribution, in full or in part.

It may appear that using a system architecture that incorporate OSS com-

ponents and uses open APIs will result in an OA system. But not all such

architectures will produce an OA, since the (possibly empty) set of available

license rights for an OA system depends on: (a) how and why OSS and open

APIs are located within the system architecture, (b) how OSS and open APIs

are implemented, embedded, or interconnected, and (c) the degree to which the

licenses of different OSS components encumber all or part of a software system’s

architecture into which they are integrated [1, 31].

The following kinds of software elements appearing in common software ar-

chitectures can affect whether the resulting systems are open or closed [6].

Software source code components—These can be either (a) standalone

programs, (b) libraries, frameworks, or middleware, (c) inter-application script

code such as C shell scripts, or (d) intra-application script code, as for creating

Rich Internet Applications using domain-specific languages such as XUL for the

Firefox Web browser [14] or “mashups” [23]. Their source code is available and

they can be rebuilt. Each may have its own distinct license, though often script

code that merely connects programs and data flows does not, unless the code is

13

substantial, reusable, or proprietary.

Executable components—These components are in binary form, and the

source code may not be open for access, review, modification, or possible redis-

tribution [29]. If proprietary, they often cannot be redistributed, and so such

components will be present in the design-, build-, and run-time architectures

but not in the distribution-time architecture.

Software services—An appropriate software service can replace a source

code or executable component.

Application programming interfaces/APIs—Availability of externally

visible and accessible APIs is the minimum requirement for an “open system”

[22]. Open APIs are not and cannot be licensed, but they can limit the propa-

gation of license obligations.

Software connectors—Software whose intended purpose is to provide a

standard or reusable way of communication through common interfaces, e.g.

High Level Architecture [20], CORBA, MS .NET, Enterprise Java Beans, and

GNU Lesser General Public License (LGPL) libraries. Connectors can also limit

the propagation of license obligations.

Methods of composition—These include linking as part of a configured

subsystem, dynamic linking, and client-server connections. Methods of com-

position affect license obligation propagation, with different methods affecting

different licenses.

Configured system or subsystem architectures—These are software

systems that are used as atomic components of a larger system, and whose in-

ternal architecture may comprise components with different licenses, affecting

the overall system license. To minimize license interaction, a configured sys-

tem or sub-architecture may be surrounded by what we term a license firewall,

namely a layer of dynamic links, client-server connections, license shims, or

other connectors that block the propagation of reciprocal obligations.

With these architectural elements, we can create an design-time or reference

architecture for a system that conforms to the software supply network shown

in Figure 2. This design-time architecture appears in Figure 5; note that it only

14

Web Browser
User Interface

Email & Calendar
User Interface

Word Processor
User Interface

Connector 1

Web App Server

Network Protocol

Connector 2

Email & Calendar

Operating System

Web Browser
Intra-Application Scripting

Connector 3

Email Server

Word Processor

Inter-Application Scripting

Network Protocol

API 1 API 2 API 3

Figure 5: A design-time architecture

Firefox User
Interface

Gnome Evolution
User Interface

AbiWord User
Interface

XWindows

Apache HTTP

HTTP

XWindows

Gnome Evolution

RH/Fedora Linux

Firefox
JavaScript scripts

XWindows

XMail

AbiWord

cshell scripts

IMAP/POP/SMTP

Unix System Calls Unix System Calls Unix System Calls

Figure 6: A build-time architecture

specifies components by type rather than by producer, meaning the choice of

producer component remains unbound at this point.

Then in Figure 6, we create a build-time rendering of this architectural design

by selecting specific components from designated software producers. The gray

boxes correspond to components and connectors not visible in the run-time

instantiation of the system in Figure 7.

Figures 7, 8, and 9 display alternative run-time instantiations of the design-

time architecture of Figure 5. The architectural run-time instance in Figure 7

corresponds to the software ecosystem niche shown in Figure 3; Figure 8 cor-

responds to the niche in Figure 4; and Figure 9 designates yet another niche

different from the previous two.

Each component selection implies acceptance of the license obligations and

rights that the producer seeks to transmits to the components consumers. How-

ever in an OA design development, component interconnections may be used to

15

Figure 7: An instantiation at run-time (Firefox, AbiWord, Gnome Evolution, Fedora) of the
build-time architecture of Figure 6 that determines the ecosystem niche of Figure 3

Figure 8: A second instantiation at run-time (Firefox, Google Docs and Calendar, Fedora)
determining the ecosystem niche of Figure 4

16

Figure 9: A third instantiation at run-time (Opera, Google Docs, Gnome Evolution, Fedora)
determining yet another niche conforming to the software supply network of Figure 2

intentionally or unintentionally propagate these obligations onto other compo-

nents whose licenses may conflict with them or fail to match [2, 15]; the system

integrator can decide to insert software shims using scripts, dynamic links to

remote services, data communication protocols, or libraries to mitigate or fire-

wall the extent to which a component’s license obligations propagate. This style

of build-time composition can be used to accommodate a system’s consumers’

policy for choosing systems that avoid certain licenses, or that isolate the license

obligations of certain desirable components. It also allows system integrators

and consumers to follow a “best of breed” policy in the selection of system

components. Finally, if no license conflicts exist in the system, or if the integra-

tor and system consumer are satisfied with the component and license choices

made, then the compositional bindings may simply be set in the most efficient

way available. This realizes a policy for accepting only components and licenses

whose obligations and rights are acceptable to the system consumers.

17

4. Software Licenses

Traditional proprietary licenses allow a company to retain control of software

it produces, and restrict the access and rights that outsiders can have. OSS

licenses, on the other hand, are designed to encourage sharing and reuse of

software, and grant access and as many rights as possible. OSS licenses are

classified as academic or reciprocal. Academic OSS licenses such as the Berkeley

Software Distribution (BSD) license, the Massachusetts Institute of Technology

license, the Apache Software License, and the Artistic License, grant nearly all

rights to components and their source code, and impose few obligations. Anyone

can use the software, create derivative works from it, or include it in proprietary

projects. Typical academic obligations are simply to not remove the copyright

and license notices.

Reciprocal OSS licenses take a more active stance towards sharing and

reusing software by imposing the obligation that reciprocally-licensed software

not be combined (for various definitions of “combined”) with any software that

is not in turn also released under the reciprocal license. Those for which most

or all ways of combining software propagate reciprocal obligations are termed

strongly reciprocal. Examples are the GPL and the Affero GPL (AGPL). The

purpose of the AGPL is to prevent a GPL software component from being inte-

grated into an OA system as a remote server, or from being wrapped with shims

to inhibit its ability to propagate the GPL obligations and rights. The purpose

of these licenses is to ensure that software so licensed will maintain (and can

propagate) the freedom to access, study, modify, and redistribute the software

source code, which academic licenses do not. This in turn assures the access,

use, and reusability of the source code for other software producers and system

integrators. Those licenses for which only certain ways of combining software

propagate reciprocal obligations are termed weakly reciprocal. Examples are

the Lesser GPL (LGPL), Mozilla Public License (MPL), and Common Public

License. The goals of reciprocal licensing are to increase the domain of OSS

by encouraging developers to bring more components under its aegis, and to

18

prevent improvements to OSS components from vanishing behind proprietary

licenses.

Both proprietary and OSS licenses typically disclaim liability, assert no war-

ranty is implied, and obligate licensees to not use the licensor’s name or trade-

marks. Newer licenses often cover patent issues as well, either giving a restricted

patent license or explicitly excluding patent rights. The Mozilla Disjunctive

Tri-License licenses the core Mozilla components under any one of three licenses

(MPL, GPL, or the GNU Lesser General Public License LGPL); OSS developers

or OA system integrators can choose the one that best suits their needs for a

particular project and component.

The Open Source Initiative (OSI) maintains a widely-respected definition of

“open source” and gives its approval to licenses that meet it [26]. OSI maintains

and publishes a repository of approximately 70 approved OSS licenses which

tend to vary in the terms and conditions of their declared obligations and rights.

However, all these licenses tend to cluster into either a strongly reciprocal,

weakly reciprocal, or minimally restrictive/academic license type.

Common practice has been for an OSS project to choose a single license

under which all its products are released, and to require developers to contribute

their work only under conditions compatible with that license. For example, the

Apache Contributor License Agreement grants enough of each author’s rights

to the Apache Software Foundation for the foundation to license the resulting

systems under the Apache Software License. This sort of rights regime, in which

the rights to a system’s components are homogeneously granted and the system

has a single well-defined OSS license, was the norm in the early days of OSS

and continues to be practiced.

We have developed an approach for expressing software licenses that is more

formal and less ambiguous than natural language, and that allows us to calculate

and identify conflicts arising from the rights and obligations of two or more

component’s licenses. Our approach is based on Hohfeld’s classic group of eight

fundamental jural relations [Hohfeld 1913], of which we use right, duty, no-

right, and privilege (Figure 10). We start with a tuple <actor, operation, action,

19

is the
opposite

of

is the
opposite

of
is the correlative of is the correlative of

RIGHT "may"

DUTY "must" PRIVILEGE "need not"

NO-RIGHT "cannot"

Figure 10: Hohfeld’s four basic relations

Licensee : may : distribute unmodified source for PROGRAM

Licensee : must : retain the GPL 2.0 copyright notice in the source

Licensee : must : retain the GPL 2.0 list of conditions in the source

Licensee : must : accompany the source with a copy of the GPL 2.0 license

Licensee : may : run PROGRAM

Figure 11: Tuples for some rights and obligations of the GPL 2.0 license

object> for expressing a right or obligation. The actor is the “licensee” for all

the licenses we have examined. The operation is one of the following: “may”,

“must”, “must not”, or “need not”, with “may” and “need not” expressing rights

and “must” and “must not” expressing obligations. Because copyright rights

are only available to entities who have been granted a sublicense, only the listed

rights are available, and the absence of a right means that it is not available. The

action is a verb or verb phrase describing what may, must, must not, or need not

be done, with the object completing the description. A license may be expressed

as a set of rights, with each right associated with zero or more obligations that

must be fulfilled in order to enjoy that right. Figure 11 sketches two rights

from GPL 2.0, the first one with no obligations and the second with three

corresponding obligations. Elsewhere, the details of this license specification

scheme, how it can be used to attribute software architectures to produce a

system license architecture, and how it can be formalized into a semantic meta-

model [2].

HLS designers have developed a number heuristics to guide architectural

design while avoiding some license conflicts. First, it is possible to use a

reciprocally-licensed component through a license firewall that limits the scope

20

of reciprocal obligations. Rather than connecting conflicting components di-

rectly through static or other build-time links, the connection is made through a

dynamic link, client-server protocol, license shim (such as an LGPL connector),

or run-time plug-ins. A second approach used by a number of large organiza-

tions is simply to avoid using any components with reciprocal licenses. A third

approach is to meet the license obligations (if that is possible) by for example

retaining copyright and license notices in the source and publishing the source

code. However, even using design heuristics such as these (and there are many),

keeping track of license rights and obligations across components that are in-

terconnected in complex OAs quickly becomes too cumbersome. Automated

support is needed to manage the multi-component, multi-license complexity.

Accordingly, we are developing an automated support capability as part of the

ArchStudio architecture design environment [4, 5, 13] that can analyze the ad-

dition of software license properties such as those shown in Figure 11 to the

interfaces of software components in an OA system. For example, in Figure 12

we see a rendering of the OA system from our case study with the AbiWord

word processing component highlighted. This component’s APIs would be at-

tributed with the GPL license obligations and rights in Figure 11, since AbiWord

is licensed under GPL, as are other components like the Gnome Evolution cal-

endaring and email application and also the Red Hat/Fedora Linux operating

system platform. As the architectural interconnections shown in the model of

Figure 12 indicate that none of these components covered by GPL are directly

interconnected to another licensed component, their license obligations do not

propagate or become “viral” in this architectural composition. Replacing any

of these GPL components with non-GPL but still OSS components would not

change the total set of obligations and rights on the system with this architec-

ture; the system would remain OSS, but the software ecosystem niche in which

it resides would shift to another niche. Once again, software licenses interact

with software architectures and together they help determine which software

ecosystem niche will embed an instantiated run-time version of the system.

21

Figure 12: The model of the system architecture used in our case study as rendered in our
automated tool, described elsewhere [4, 2]

5. Architecture, License, and Ecosystem Evolution

An OA system can evolve by a number of distinct mechanisms, some of which

are common to all systems but others of which are a result of heterogeneous

component licenses in a single system.

By component evolution— One or more components can evolve, altering

the overall system’s characteristics (for example, upgrading and replacing the

Firefox Web browser from version 3.5 to 3.6). Such minor versions changes

generally have no effect on system architecture.

By component replacement— One or more components may be replaced

by others with modestly different functionality but similar interface, or with a

different interface and the addition of shim code to make it match (for example,

replacing the AbiWord word processor with either Open Office Writer or MS

Word). However, changes in the format or structure of component APIs may ne-

cessitate build-time and run-time updates to component connectors. Figure 13

shows some possible alternative system compositions that result from replacing

components by others of the same type but with a different license.

By architecture evolution— The OA can evolve, using the same compo-

22

nents but in a different configuration, altering the system characteristics. For

example, as discussed in Section 4, revising or refactoring the configuration in

which a component is connected can change how its license affects the rights

and obligations for the overall system. This could arise when replacing word

processing, calendaring, and email components and their connectors with Web-

browser-based services such as Google Docs, Google Calendar, and Google Mail.

The replacement would eliminate the legacy components and relocate the de-

sired application functionality to operate within the Web browser component,

resulting in what might be considered a simpler and easier-to-maintain system

architecture, but one that is less open and now subject to a proprietary Terms

of Service license. System consumer policy preferences for licenses, and subse-

quent participation in a different ecosystem niche, may thus mediate whether

such an alternative system architecture is desirable or not.

By component license evolution— The license under which a component

is available may change, as for example when the license for the Mozilla core

components was changed from the Mozilla Public License (MPL) to the current

Mozilla Disjunctive Tri-License; or the component may be made available under

a new version of the same license, as for example when the GNU General Public

License (GPL) version 3 was released. The three architectures in Figure 13 that

incorporate the Firefox Web browser show how its tri-license creates new evo-

lutionary paths by offering different licensing options. These options and paths

were not available previously with earlier versions of this component offered

under only one or two license alternatives.

By a change to the desired rights or acceptable obligations— The OA

system’s integrator or consumers may desire additional license rights (for exam-

ple the right to sublicense in addition to the right to distribute), or no longer

desire specific rights; or the set of license obligations they find acceptable may

change. In either case the OA system evolves, whether by changing components,

evolving the architecture, or other means, to provide the desired rights within

the scope of the acceptable obligations. For example, they may no longer be

willing or able to provide the source code for components within the reciprocal-

23

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL, GPL,
GPL, GPL

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

LGPL,
Google ToS,
Google ToS,

GPL

Instance
architecture:

Opera,
 Google Docs,
Google Cal.,

Fedora

Opera EULA,
Google ToS,
Google ToS,

GPL

Instance
architecture:

Opera,
AbiWord,
Evolution,

Fedora

Opera EULA,
GPL, GPL, GPL

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL,
Google ToS,
Google ToS,

MS EULA

...

Figure 13: Possible evolutionary paths among a few instance architectures; some paths are
impractical due to the changes in license obligations

ity scope of a GPL-licensed module. Figure 14 shows an array of choices among

types of licenses for different types of components that appear in the OA case

study example. Each choice determines the obligations that component produc-

ers can demand of their consumers in exchange for the access/usage rights they

offer

The interdependence of producers, integrators, and consumers results in a co-

evolution of software systems and social networks within an OA ecosystem [30].

Closely-coupled components from different producers must evolve in parallel in

order for each to provide its services, as evolution in one will typically require

a matching evolution in the other. Producers may manage their evolution with

a loose coordination among releases, for example as between the Gnome and

Mozilla organizations. Each release of a producer component create a tension

through the ecosystem relationships with consumers and their releases of OA

systems using those components, as integrators accommodate the choices of

available, supported components with their own goals and needs. As discussed

in our previous work [2], license rights and obligations are manifested at each

24

Service

Weakly
Reciprocal

or Academic

Proprietary

Strongly
Reciprocal

Opera
(Opera EULA)

Google Docs
(Google ToS)

Google Calendar
(Google ToS)

FreeBSD
(BSD variant)

Fedora
(GPL)

Gnome Evolution
(GPL)

Calendar,
 email

AbiWord
(GPL)

OpenOffice
(LGPL)

Firefox
(MPL or
LGPL or
 GPL)

Word
processor

Browser

Windows
(MS EULA)

WordPerfect
(Corel License)

Platform

Figure 14: Some architecture choices and their license categories

component interface then mediated through the OA of the system to entail the

rights and corresponding obligations for the system as a whole. As a result,

integrators must frequently re-evaluate the OA system rights and obligations.

In contrast to homogeneously-licensed systems, license change across versions

is a characteristic of OA ecosystems, and architects of OA systems require tool

support for managing the ongoing licensing changes.

6. Discussion

At least two topics merit discussion following from our approach to under-

standing of software ecosystems and ecosystem niches for OA systems: first,

how might our results shed light on software systems whose architectures artic-

ulate a software product line; and second, what insights might we gain based on

the results presented here on possible software license architectures for mobile

computing ecosystems. Each is addressed in turn.

Software product lines (SPLs) rely on the development and use of explicit

software architectures [7, 12]. However, the architecture of an SPL or software

ecosystem does not necessarily require an OA—there is no need for it to be open.

Thus, we are interested in discussing what happens when SPLs may conform

to an OA, and to an OA that may be subject to heterogeneously licensed SPL

25

components. Three considerations come to mind:

1. If the SPL is subject to a single homogeneous software license, which

may often be the case when a single vendor or government contractor has

developed the SPL, then the license may act to reinforce a vendor lock-in

situation with its customers. One of the motivating factors for OA is the

desire to avoid such lock-in, whether or not the SPL components have

open or standards-compliant APIs. However, a single license simplifies

determination of the software ecosystem in which these system is located.

2. If an OA system employs a reference architecture, then such a reference

or design-time architecture effectively defines an SPL consisting of pos-

sible different system instantiations composed from similar components

from different producers (e.g., different but equivalent Web browsers, word

processors, calendaring and email applications). This can be seen in the

design- time architecture depicted in Figure 5, the build-time architecture

in Figure 6, and the instantiated run-time architectures in Figures 7, 8,

and 9.

3. If the SPL is based on an OA that integrates software components from

multiple producers or OSS components that are subject to different het-

erogeneous licenses, then we have the situation analogous to what we have

presented in this paper, but now in the form of virtual SPLs from a vir-

tual software production enterprise [24] that spans multiple independent

OSS projects and software production enterprises. As such, SPL concepts

are compatible with OA systems that are composed from heterogeneously

licensed components, but do not impact the formation or evolution of the

software ecosystem niches where such systems may reside.

Our approach for using open software system architectures and component

licenses as a lens that focuses attention to certain kinds of relationships within

and across software supply networks, software ecosystems, and networks of soft-

ware ecosystems has yet to be applied to systems on mobile computing plat-

forms. Bosch [8] notes this is a neglected area of study, but one that may offer

26

interesting opportunities for research and software product development. Thus,

what happens when we consider Apple iPhone/iPad OS, Google Android OS

phones, Nokia Symbian OS phones, Nokia Maemo OS hand-held computers,

Microsoft Windows 7 OS phones, Intel Moblin OS netbooks, or Nintendo DS

portable game consoles as possible platforms for OA system design and de-

ployment? First, all of these devices are just personal computers with operating

systems, albeit in small, easy to carry, and wireless form factors. They represent

a mix of mostly proprietary operating system platforms, though some employ

Linux-based or other OSS alternative operating systems. Second, Mobile OS

platforms owners (Apple, Nokia, Google, Microsoft) are all acting to control the

software ecosystems for consumers of their devices through establishment of log-

ically centralized (but possibly physically decentralized) application distribution

repositories or online stores, where the mobile device must invoke a networked

link to the repository to acquire (for fee/free) and install apps. Apple has had

the greatest success in this strategy and dominates the global mobile application

market and mobile computing software ecosystems. But overall, OA systems

are not necessarily excluded from these markets or consumers. Third, given our

design-time architecture of the case study system shown in Figure 5, is it possi-

ble to identify a build-time version that could produce a run-time version that

could be deployed on most or all of these mobile devices? One such build-time

architecture would compose an Opera Web browser, with Web services for word

processing, calendaring and email, that could be hosted on either proprietary

or OSS mobile operating systems. This alternative arises since Opera Software

has produced run-time versions of its proprietary Web browser for these mobile

operating systems, for accessing the Web via a wireless/cellular phone network

connection. Similarly, in Figure 13 the instance architecture on the right could

evolve to operate on a mobile platform like an Android-based mobile device

or Symbian-based cell phone. So it appears that mobile computing devices do

not pose any unusual challenges for our approach in terms of understanding

their software ecosystems or the ecosystem niches for OA systems that could be

hosted on such devices.

27

7. Conclusion

The role of software ecosystems in the development and evolution of heteroge-

neously-licensed open architecture systems has received insufficient considera-

tion. Such systems are composed of components potentially under two or more

licenses, open source software or proprietary or both, in an architecture in which

evolution can occur by evolving existing components, replacing them, or refac-

toring. The software licenses of the components both facilitate and constrain

in which ecosystems a composed system may lie. In addition, the obligations

and rights carried by the licenses are transmitted from the software component

producers to system consumers through the architectural choices made by sys-

tem integrators. Thus software component licenses help determine the contours

of the software supply network and software ecosystem niche that emerge for

a given implementation of a composed system architecture. Accordingly, we

described examples for systems whose host software platform span the range

of personal computer operating systems, Web services, and mobile computing

devices.

Consequently, software component licenses and the architectural composi-

tion of a system determine the software ecosystem niche where a systems lies.

Understanding and describing software ecosystem niches is a key contribution

of this work. A case study of an open architecture software system that ar-

ticulates different niches was employed to this end. We examined how the

architecture and software component licenses of a composed system at design-

time, build-time, and run-time helps determine the system’s software ecosystem

niche, and provides insight for identifying potential evolutionary paths of soft-

ware system, architecture, and niches. Similarly, we detailed the ways in which

a composed system can evolve over time, and how a software system’s evolution

can change or shift the software ecosystem niche in which the system resides and

thus producer-consumers relationships. Then we described how virtual software

product lines can be can be identified through a lens that examines the asso-

ciation between open architectures, software component licenses, and software

28

ecosystems.

Finally, in related work [4, 2, 3] we identified structures for modeling soft-

ware licenses and the license architecture of a system, and automated support

for calculating its rights and obligations. Such capabilities are needed in order

to manage and track an OA system’s evolution in the context of its ecosystem

niche. We have outlined an approach for achieving these structures and support

and sketched how they further the goal of reusing and exchanging alternative

software components and software architectural compositions. More work re-

mains to be done, but we believe this approach transforms a vexing problem of

stating in detail how study of software ecosystems can be tied to core issues in

software engineering like software architecture, product lines, component-based

reuse, license management, and evolution, into a manageable one for which

workable solutions can be obtained.

Acknowledgments

This research is supported by grants #0534771 and #0808783 from the U.S.

National Science Foundation, and grant #N00244-10-1-0038 from the Acquisi-

tion Research Program at the Naval Postgraduate School. No review, approval,

or endorsement is implied.

References

[1] Alspaugh, T. A., Antón, A. I., 2008. Scenario support for effective require-

ments. Information and Software Technology 50 (3), 198–220.

[2] Alspaugh, T. A., Asuncion, H. U., Scacchi, W., 2009. Intellectual property

rights requirements for heterogeneously-licensed systems. In: 17th IEEE

International Requirements Engineering Conference (RE’09). pp. 24–33.

[3] Alspaugh, T. A., Asuncion, H. U., Scacchi, W., 2009. The role of software

licenses in open architecture ecosystems. In: First International Workshop

on Software Ecosystems (IWSECO-2009). pp. 4–18.

29

[4] Alspaugh, T. A., Scacchi, W., Asuncion, H. U., Nov. 2010. Software licenses

in context: The challenge of heterogeneously-licensed systems. Journal of

the Association for Information Systems 11 (11), 730–755.

[5] Asuncion, H. U., 2009. Architecture-centric traceability for stakeholders

(ACTS). Ph.D. thesis, University of California, Irvine.

[6] Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Prac-

tice. Addison-Wesley Longman.

[7] Bosch, J., 2000. Design and Use of Software Architectures: Adopting and

Evolving a Product-Line Approach. Addison-Wesley.

[8] Bosch, J., 2009. From software product lines to software ecosystems. In:

13th International Software Product Line Conference (SPLC’09). pp. 111–

119.

[9] Bosch, J., Bosch-Sijtsema, P., 2010. From integration to composition: On

the impact of software product lines, global development and ecosystems.

J. Syst. Softw. 83 (1), 67–76.

[10] Boucharas, V., Jansen, S., Brinkkemper, S., 2009. Formalizing software

ecosystem modeling. In: First International Workshop on Open Component

Ecosystems (IWOCE’09). pp. 41–50.

[11] Brown, A. W., Booch, G., 2002. Reusing open-source software and prac-

tices: The impact of open-source on commercial vendors. In: Software

Reuse: Methods, Techniques, and Tools (ICSR-7). pp. 381–428.

[12] Clements, P., Northrop, L., 2001. Software Product Lines: Practices and

Patterns. Addison-Wesley Professional.

[13] Dashofy, E. M., 2007. Supporting stakeholder-driven, multi-view software

architecture modeling. Ph.D. thesis, University of California, Irvine.

[14] Feldt, K., 2007. Programming Firefox: Building Rich Internet Applications

with XUL. O’Reilly Media, Inc.

30

[15] German, D. M., Hassan, A. E., 2009. License integration patterns: Dealing

with licenses mismatches in component-based development. In: 28th Inter-

national Conference on Software Engineering (ICSE ’09). pp. 188–198.

[16] Jansen, S., Brinkkemper, S., Finkelstein, A., 2009. Business network man-

agement as a survival strategy: A tale of two software ecosystems. In: First

Workshop on Software Ecosystems. pp. 34–48.

[17] Jansen, S., Finkelstein, A., Brinkkemper, S., 2009. A sense of community:

A research agenda for software ecosystems. In: 28th International Confer-

ence on Software Engineering (ICSE ’09), Companion Volume. pp. 187–190.

[18] Jensen, C., Scacchi, W., Jul./Sep. 2005. Process modeling across the web

information infrastructure. Software Process: Improvement and Practice

10 (3), 255–272.

[19] Kuehnel, A.-K., Jun. 2008. Microsoft, open source and the software ecosys-

tem: of predators and prey—the leopard can change its spots. Information

& Communucation Technology Law 17 (2), 107–124.

[20] Kuhl, F., Weatherly, R., Dahmann, J., 1999. Creating computer simulation

systems: an introduction to the high level architecture. Prentice Hall.

[21] Messerschmitt, D. G., Szyperski, C., 2003. Software Ecosystem: Under-

standing an Indispensable Technology and Industry. MIT Press.

[22] Meyers, B. C., Oberndorf, P., 2001. Managing Software Acquisition: Open

Systems and COTS Products. Addison-Wesley Professional.

[23] Nelson, L., Churchill, E. F., 2006. Repurposing: Techniques for reuse and

integration of interactive systems. In: International Conference on Infor-

mation Reuse and Integration (IRI-08). p. 490.

[24] Noll, J., Scacchi, W., Feb. 1999. Supporting software development in virtual

enterprises. J. of Digital Information 1 (4).

31

[25] Noll, J., Scacchi, W., 2001. Specifying process-oriented hypertext for or-

ganizational computing. J. Network and Computing Applications 24 (1),

39–61.

[26] Open Source Initiative, 2010. Open Source Definition. http://www.

opensource.org/docs/osd.

[27] Oreizy, P., 2000. Open architecture software: A flexible approach to decen-

tralized software evolution. Ph.D. thesis, University of California, Irvine.

[28] Ovaska, P., Rossi, M., Marttiin, P., 2003. Architecture as a coordination

tool in multi-site software development. Software Process: Improvement

and Practice 8 (4), 233–247.

[29] Rosen, L., 2005. Open Source Licensing: Software Freedom and Intellectual

Property Law. Prentice Hall.

[30] Scacchi, W., 2007. Free/open source software development: Recent research

results and emerging opportunities. In: 6th Joint European Software En-

gineering Conference and ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE 2007). pp. 459–468.

[31] Scacchi, W., Alspaugh, T. A., May 2008. Emerging issues in the acquisition

of open source software within the U.S. Department of Defense. In: 5th

Annual Acquisition Research Symposium.

[32] Taylor, R. N., Medvidovic, N., Dashofy, E. M., 2009. Software Architecture:

Foundations, Theory, and Practice. Wiley.

[33] Unity Technologies, Dec. 2008. End User License Agreement. http://

unity3d.com/unity/unity-end-user-license-2.x.html.

[34] van Gurp, J., Prehofer, C., Bosch, J., 2010. Comparing practices for reuse in

integration-oriented software product lines and large open source software

projects. Software — Practice & Experience 40 (4), 285–312.

32

[35] Ven, K., Mannaert, H., 2008. Challenges and strategies in the use of open

source software by independent software vendors. Information and Software

Technology 50 (9-10), 991–1002.

33

